The generator matrix

 1  0  1  1  1  1  1  1  3  1  0  1  1  1 2X+3  1  1  3  1  1  1  1  X  1  1 X+6  1  1 2X+6  1 2X+3  1  1  1  X  1  1  1  1  1 2X+6  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1 2X  1  1 X+6  1  1  1 2X+3  1  1 X+6  1
 0  1  1  8  3  2  0  4  1  8  1 2X+4 X+4 2X+8  1  3  5  1  1  4  0 X+5  1 2X+4 X+8  1 X+1 2X+5  1 2X+1  1 X+1 2X+8 X+5  1 2X+3  X 2X+6 2X+6  1  1 2X+3 X+7  1 2X+2 2X+2 2X+3 2X+6  X 2X X+3 2X+3  6  3  6 X+2  1 X+2  0  1 X+7 X+6 2X+6  1 2X+8 X+5  1 2X+7
 0  0 2X  6 X+6 X+3 2X+6 2X+3  X 2X+6 2X+6  3 X+6  0 X+3  3  X 2X+3 X+6  6 2X+3 2X  6 2X+3  X 2X 2X X+3 2X X+3  6  3 2X+6  6  X X+6  X 2X  3 X+3 X+6  X  6  3  3 2X  6 2X+3  6 2X+6  3  0 2X+6 2X+3 X+3 X+6 2X+3 2X+6  6  3  X 2X X+3 2X X+6 2X+3  0  3

generates a code of length 68 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 131.

Homogenous weight enumerator: w(x)=1x^0+360x^131+664x^132+858x^133+720x^134+774x^135+618x^136+432x^137+464x^138+432x^139+456x^140+390x^141+186x^142+132x^143+36x^144+6x^146+6x^148+2x^150+6x^151+16x^156+2x^162

The gray image is a code over GF(3) with n=612, k=8 and d=393.
This code was found by Heurico 1.16 in 99 seconds.